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CONSTITUTIVE EQUATIONS

FOR TWO-STEP THERMOELASTIC PHASE TRANSFORMATIONS

UDC 539.4A. A. Movchan,1 P. V. Shelymagin,2 and S. A. Kazarina1

A number of hypotheses on the mechanical behavior of shape memory alloys such as titanium nickelide
in two-step (martensitic and rhombohedral) phase transformations are formulated on the basis of
experimental data. A system of relations linking stresses, strains, temperature, and phase composition
in such transitions is proposed.

As is known, besides a thermoelastic phase transition to the martensitic state with a monoclinic crystal
lattice denoted by B19′ (below M-transition), titanium nickelide can undergo a transition from the austenitic phase
with a body centered cubic lattice B2 to the rhombohedral phase R and back (below R-transformation).

Experimental data on the mechanical behavior of materials during the R-transition and the two-step R- and
M-transformation are given in [1–11] and other papers. These data lead to conflicting conclusions. Thus, Stachoviac
and McCormic [7], using experimental data, make the paradoxical conclusion that the maximum strain generated
in the direct R-transformation decreases with increase in applied stress. At the same time, according to the data of
[9, 10], the strain due to the complete direct R-transformation increases with increase in applied stress. According
to [9], the reverse transformation is a one-step process, and from the data of [10], it is a two-step process. According
to the data of [7], the reverse transformation from the two-phase state proceeds in two steps; otherwise, it proceeds
in one step.

In the present work, from analysis of experimental data, we formulated a number of simplifying assump-
tions on two-step phase transformations in titanium nickelide. A system of constitutive relations linking phase
composition, temperature, stress, and strain in such processes is proposed.

1. Qualitative Description of the Two-Step Phase Transformation. Having analyzed experimental
data, we propose a model for the two-step phase transition in titanium nickelide, which is based on the following
hypotheses.

The direct and reverse phase transformations imply transformations in which the degree of crystal-lattice
symmetry decreases or increases, respectively. Thus, the transitions B2→ R, B2→ B19′, and R→ B19′ are direct,
and the transitions B19′ → R, B19′ → B2, and R → B2 are reverse. Transitions from the same phase to different
final states can be compared in the degree of lattice symmetry. Thus, the transition B2→ B19′ changes symmetry
more radically than B2→ R, and B19′ → B2 changes it more radically than R→ B2.

1. For the direct transformations, the following assumptions are adopted:
1.1. The temperature–force conditions of the beginning and end of formation of a new phase do not depend

on the type of structure from which this phase is formed.
1.2. If the same initial phase can simultaneously undergo two direct phase transitions which differ in the

final product, the transition occurs that changes the crystal lattice symmetry more radically.
1.3. If there are simultaneous phase transitions from two different structures to the same structure, these

transitions do not change the relation between parameters of these structures.

1Moscow State Aviation Institute, Moscow 125871. 2Institute of Applied Mechanics, Russian Academy of
Sciences, Moscow 117334. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 42, No. 5, pp. 152–
161, September–October, 2001. Original article submitted February 6, 2001.

864 0021-8944/01/4205-0864 $25.00 c© 2001 Plenum Publishing Corporation



2. For the reverse transformation, the following assumptions are adopted:
2.1. The dependences of the temperature of the beginning and end of a transition from a certain initial

phase on stress are identical no matter what the product of this transition.
2.2. If temperature–force conditions allow reverse transformations from the same phase to two different

phases between which a phase transition is impossible under the given conditions, the transformation occurs that
changes crystal symmetry to a lesser extent.

2.3. If reverse phase transitions from a low-symmetry phase to an intermediate phase and from the in-
termediate phase to a more symmetric phase are possible simultaneously, the intermediate transformation in the
constitutive equations can be ignored, assuming that there is immediate transition of both the first and the second
phases to the final phase.

Hypotheses 1.1, 1.2, 2.1, and 2.2 are based on analysis of the experimental data of [1–11]. Assumptions 1.3
and 2.3 are adopted to simplify the constitutive relations.

According to assumptions 1.1 and 2.1, there are eight characteristic temperatures of the phase transforma-
tions: R+

begin and R+
end are the temperatures of the beginning and end of formation of the rhombohedral phase

in the direct transformation, M+
begin and M+

end are the temperatures of the beginning and end of formation of the
martensitic phase in the direct transformation [without regard to the particular phase (austenitic or rhombohedral)
from which the martensitic phase is formed]; M−begin and M−end are the temperature of the beginning and end of
transition from the martensitic phase in the reverse transformation [without regard to the particular phase (rhom-
bohedral or austenitic) produced by the transition]; R−begin and R−end are the temperatures of the beginning and end
of transition from the rhombohedral phase in the reverse transformation.

In describing two-step thermoelastic transformations for both direct and reverse transitions, it is common to
introduce the temperatures of the beginning and end of formation of the final reaction products. Thus, constructing
a consistent model within the framework of linear dependences of transition temperatures on stress is not possible.
Indeed, for small stresses, the austenitic phase is formed from the rhombohedral phase in the reverse transformation.
Therefore, in this region, the lines of the beginning and end of formation of the austenitic phase should correspond
to the lines of the beginning and end of formation of the rhombohedral phase in the direct transformation. At the
same time, for large stresses, the austenitic phase is formed from the martensitic phase in the reverse transformation.
These lines should correspond to the straight lines of the beginning and end of formation of the martensitic phase
in the direct transformation. Therefore, the lines of the beginning and end of formation of the austenitic phase in
the reverse transformation should have inflection, and at the point of inflection, the slope of the lines increases by
about a factor of three.

A fundamental difference between the proposed system of characteristic temperatures and conventional
temperatures is that for the reverse transformation, we use the temperatures of disappearance of the initial struc-
ture instead of the temperatures of formation of the end product. The lines of disappearance of the rhombohedral
(martensitic) phase in the reverse transformation correspond to the lines of formation of the rhombohedral (marten-
sitic) phase in the direct transformation. Therefore, in transition from large to small stresses, these lines have no
inflections.

2. Constitutive Equations of Phase-Composition Variation. Below, according to [9], it is assumed
that the transition temperatures are linear functions of the stress intensity σi:

R+
begin = R0+

begin + k+
Rσi, R+

end = R0+
end + k+

Rσi, R−begin = R0−
begin + k−Rσi, R−end = R0−

end + k−Rσi,

M+
begin = M0+

begin + k+
Mσi, M+

end = M0+
end + k+

Mσi, M−begin = M0−
begin + k−Mσi, M−end = M0−

end + k−Mσi, (2.1)

k−R ≈ k
+
R = kR, k−M ≈ k

+
M = kM, kM ≈ 3kR.

For simplicity, the effect of the first and third invariants of the stress tensor on the transition temperatures
are ignored in the present work.

For titanium nickelide in which the concentration of nickel is 0.2% higher than its concentration in the
equiatomic composition, according to the experimental data of [9]

R0+
begin = 46◦C, R0+

end = 38◦C, R0−
begin = 42◦C, R0−

end = 50◦C,

M0+
begin = 5◦C, M0+

end = −30◦C, M0−
begin = 35◦C, M0−

end = 45◦C, (2.2)

kR = 0.073, kM = 0.264.
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Fig. 1

We introduce the three internal state variables (qM, qA, and qR), which can be treated as the volume fraction
of the martensitic and austenitic phases, and the degree of completeness of the R-transformation. The last quantity
is considered normalized:

qA + qR + qM = 1. (2.3)

The lines of the beginning and end of the direct transformations corresponding to dependences (2.1) and
data (2.2) are shown in Fig. 1 in the σi–T coordinates (the dashed straight lines correspond to the rhombohedral
transformation, and the solid straight lines correspond to the martensitic transformation). In the region A (Fig. 1)
no direct phase transitions occur. Let the region B be part of the rhombohedral strip between the straight lines 1
[T = R+

begin(σ)] and 2 [T = R+
end(σ)] that does not belong to the martensitic region C lying between the straight

lines 3 [T = M+
begin(σ)] and 4 [T = M+

end(σ)]. The conditions of the direct rhombohedral transformation are the
following: 1) presence of the austenitic phase in the material; 2) the image point should be present in the region B;
3) the motion of the image point should satisfy the inequality

kR dσi > dT. (2.4)

The degree of completeness of the rhombohedral transformation varies in accordance with the dependence

qR = 1− (1− q0
R)(1− f(R+

begin,R
+
end, T )), (2.5)

where q0
R is the value of qR when the image point intersects the left (upper) boundary of the rhombohedral region. If

we consider a step of the rhombohedral transformation that begins from a point inside the rhombohedral strip, then,
instead of R+

begin as the first argument of the function f (2.5), we should use the temperature T+
begin beginning with

which condition (2.4) is satisfied in the process considered, and the value of q0
R at this temperature should be used as

qR. Formula (2.5) is based on the assumption of similarity of direct-transformation curves with temperature variation
in incomplete intervals of phase-transition temperatures with respect to the end point of the direct transformation
[12–14].

According to [14], the function f can be defined as

f(T1, T2, T ) = sin
(π

2
T1 − T
T1 − T2

)
. (2.6)

From experimental results of [2, 3, 7, 9, 10] it follows that phase-composition variations correlate with
variations in relative electrical resistance, whose temperature dependence can be described by formulas of the type
of (2.6).

Since in the direct transformation, only the austenitic phase can transform into the rhombohedral phase,
the fraction of the martensitic phase for the process considered has constant value qM = q0

M, and, by virtue of (2.3),
the fraction of the austenitic phase is determined from the relation

qA = 1− qR − q0
M. (2.7)
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Fig. 2

If q0
M 6= 0, then the change of qR according to (2.5) does not stop with intersection of the right (lower)

boundary of the rhombohedral region but it continues until the quantity qA calculated from (2.7) becomes equal
to zero. After this, the phase transitions stop until the beginning of the martensitic transformation. The direct
rhombohedral transformation also stops, without having completed, if the image point falls in the common part of
the martensitic and rhombohedral regions, which corresponds to assumption 1.2.

Sufficient conditions of the direct martensitic transformation are the presence of the austenitic or rhombo-
hedral phases in the material, the presence of the image point in the martensitic region, and satisfaction of the
following inequality for increments during motion of the image point:

kM dσi > dT. (2.8)

The increase in the fraction of the martensitic phase obeys the dependence

qM = 1− (1− q0
M)(1− f(M+

begin,M
+
end, T )), (2.9)

where q0
M is the value of qM when the image point intersects the left (upper) boundary of the martensitic region. If a

step of the direct transformation begins at a point located inside the martensitic region, the instead of M+
begin as the

first argument of the function f (2.9), we should use the temperature T+
begin, beginning with which condition (2.8)

is satisfied for the process considered.
During the direct transformation, both the austenitic and rhombohedral phases can transform into the

martensitic phase. Let, at the moment of beginning of the direct martensitic transformation, qR = q0
R and qA = q0

A.
By virtue of assumption 1.3, in the transition considered, the ratio between the parameters of the initial phases is
conserved:

qR/qA = q0
R/q

0
A. (2.10)

In addition,

qR + qA = 1− qM. (2.11)

Solving system (2.10), (2.11), taking into account that q0
R + q0

A = 1− q0
M and using formula (2.9), we obtain

qR = q0
R(1− f1(M+

begin,M
+
end, T )), qA = q0

A(1− f1(M+
begin,M

+
end, T )). (2.12)

Relations (2.5), (2.9), and (2.12) define the variation of the phase composition in the direct two-step trans-
formation.

Figure 2 shows the lines describing the reverse transformation corresponding to dependences (2.1) and
data (2.2) (continuous straight lines correspond to the martensitic transformation and the dashed straight lines
correspond to the rhombohedral transformation). The conditions of the reverse martensitic transformation are the
presence of the image point in the strip between the straight lines 1 [T = M−begin(σ)] and 2 [T = M−end(σ)] (Fig. 2)
and satisfaction of the inverse of inequality (2.8). The condition of the reverse rhombohedral transformation is the
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presence of the image point in the region between the dashed straight lines 3 [T = R−begin(σi)] and 4 [T = R−end(σi)]
(Fig. 2) and satisfaction of the inequality inverse of (2.4).

In the reverse transformation, the decrease in the parameter of the initial phase is given by the dependences

qM = q0
Mf(M−end,M

−
begin, T ); (2.13)

qR = q0
Rf(R−end,R

−
begin, T ). (2.14)

If the parameter of the martensitic or rhombohedral phases begins to decrease inside the corresponding region,
as the first argument of the function f (2.13) or (2.14), we should use the temperature T−begin at which the inequalities
for increments are satisfied for the first time, which corresponds to the beginning of the reverse transformation.
In (2.13) and (2.14), q0

M and q0
R are the values of the corresponding parameters at the beginning of this step

of the reverse transformation. Formulas (2.13) and (2.14) are obtained from the assumption that the reverse-
transformation curves are similar with temperature variation in incomplete intervals of transition temperatures
with respect to the end point of the reverse transformation [13, 14].

It should be noted that in the case of heating and simultaneous increase in stress intensity kM > kR, a
situation is possible where the direct-transition conditions (2.8) are satisfied for the martensitic transformation,
and the reverse-transition conditions are satisfied for the rhombohedral transformation. In addition, a situation
is possible where under cooling and decrease in stress intensity, the reverse martensitic transformation and the
direct rhombohedral transformation can occur simultaneously. However, in the present work, such cases are not
considered.

Formulas (2.13) and (2.14) are valid irrespective of the end product of the phase transition. If the R-strip is
intersected during the reverse transformation and there is no simultaneous intersection of the M-strip, the rhombo-
hedral phase can transform only to the austenitic phase. Therefore, the quantity qM has a constant value: qM = q0

M.
The quantity qR decreases in accordance to the dependence (2.14), and, thus, qA = 1 − qR − q0

M. If there is
intersection of the martensitic-transformation line and there is no intersection of the rhombohedral region, the end
product depends on where the image point is located — above or below the rhombohedral region. If it is lower
(small stresses), the parameter of the austenitic phase has a constant value qA = q0

A, the parameter of the marten-
sitic phase decreases in accord with (2.13), and qR = 1 − qM − q0

A. The process is described by these relations
until the image point leaves the strip of the martensitic transformation or until the value of qR becomes zero. If
the point of entry into the martensitic strip is above the rhombohedral region, the martensitic phase decreases in
accord with (2.13), qR = 0, and qA = 1− qM.

If during the reverse transformation, the image point of the state of the material, moving, intersects si-
multaneously the rhombohedral and martensitic regions, the change of the parameters qM and qR is given by
formulas (2.13) and (2.14), and the quantity qA is defined by the relation qA = 1− qR − qM.

3. Constitutive Equations for Phase Strains. The system describing the development of phase strains
is written as follows:
— for the direct transformation,

εij = εR
ij + εM

ij , dεR
ij = cR0 σ

′
ij dqR, dεM

ij = (βδij + cM0 σ
′
ij + aM

0 ε
M
ij )dqM;

— for the reverse transformation,

dεR
ij =

(εR
0ij

qR
0

)
dqR, dεM

ij =
( aM

0 ε
M
0ij

exp (aM
0 q

M
0 )− 1

+ aM
0 ε

M
ij

)
dqM.

Here for simplicity, we ignore the reversible shape memory effect in the reverse transformations and the volume effect
of the reaction for the direct rhombohedral transformation; εij , εM

ij , and εR
ij are the total phase strain and the phase

strain due to the martensitic and rhombohedral transformations (all phase strains are reckoned from the austenitic
state), qR

0 , and εR
0ij are the values of the parameter of the rhombohedral phase and the corresponding phase strain

at the initial point of the examined step of the reverse transformation, qM
0 and εM

0ij are similar values for the reverse
martensitic transition, and β, aM

0 , cR0 , and cM0 are parameters of the material. The strain equations for the martensitic
transformation are obtained in [12–14] using a micromechanical scheme that simulates simultaneously the processes
of origin and growth of martensite crystals in the austenitic matrix. The strain equations for the R-transformation
are written by analogy taking into account that the strain of the complete direct R-transformation under the
action of constant stress is proportional to the magnitude of this stress, and the oriented transformation [15] is
less pronounced for the rhombohedral transition than for the martensitic transformation [9]. For the martensitic
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Fig. 3 Fig. 4

transformation [15] of TN-1 titanium nickelide, β = 0.00117, aM
0 = 0.718, cM0 = 0.000283 a MPa−1, and for the

rhombohedral transformation, cR0 = 4.5 · 10−5 MPa−1 [9].
4. Use of the Model to Describe the Behavior of Titanium Nickelide. Figure 3 shows the

temperature dependences of the axial phase strain ε for the direct and reverse transformations under the action
of constant uniaxial stress σ calculated from the equations described above for the transition temperatures (2.2)
typical of Ti–Ni alloy (50.2% Ni). Let σk (k = 1, 2, . . . , 6) be the abscissa of the points of intersection of the straight
lines in Figs. 1 and 2:

σ1 =
R0+

end −M0+
begin

∆k
, σ2 =

R0+
begin −M0+

begin

∆k
, σ3 =

R0−
end −M0−

end

∆k
, σ4 =

R0−
end −M0−

begin

∆k
,

σ5 =
R0−

begin −M0−
begin

∆k
, σ6 =

R0−
begin −M0−

end

∆k
, ∆k = kM − kR.

For materials with typical transition temperatures (2.2), the inequalities σ6 < σ3 < σ5 < σ4 < σ1 < σ2, and σ6 < 0
are satisfied.

For all the loops shown in Fig. 3, except for the loop 5, the temperature of the end of the cooling process
is such that at the beginning of the reverse transformation, the material is in the two-phase state at qR = qM. For
the loop 1, σ = 50 MPa < σ4. In this case (at small stresses), only the direct transformation is a two-step process,
and a pronounced anhysteretic segment is observed. For loop 2, σ = 120 MPa (σ4 < σ < σ1). In this case, both the
direct and reverse transformations are two-step processes, and in both cases, the small-strain segment precedes the
large-strain segment. For loop 3, σ = σ1 = 172 MPa, and the anhysteretic segment on the direct transformation
curve degenerates into a point of inflection. For loop 4, σ = σ2 = 214 MPa, and both the direct and reverse
transformations are one-step processes because the direct transformation does not produce the R-phase. Loop 5
corresponds to the case σ = 120 MPa, i.e., to the same stress as for loop 2 but the direct transformation has led to
a completely martensitic state, and, hence, the reverse transformation occurred from a single-phase state. In this
case, for any values of the applied stress, the reverse transformation has the one-step character.

However, for alloys with higher nickel concentration or with iron additives, two-step reverse transformations
can also occurred from completely martensitic states because with increase in nickel concentration or with addition
of iron, the martensitic-transition temperature decreases sharply. As a result, it may happen that M0−

end < R0−
begin

and σ6 > 0. For small stresses in the reverse transformation from the completely martensitic state, the large-strain
transformation B19′ → R first occurs, which is followed by an anhysteretic segment and then by the small-strain
transition R→ B2.

Figure 4 shows hysteresis loops obtained under heating (solid curves) and cooling (dashed curved) of the
sample from a material with characteristics R0+

begin = 260 K, R0+
end = 250 K, M0+

begin = 170 K, M0+
end = 70 K,

M0−
begin = 175 K, M0−

end = 190 K, R0−
begin = 225 K, R0−

end = 265 K, kR = 0.075, kM = 0.262, which, according to [3],
correspond to Ti50Ni47Fe3 alloy. Cooling is performed to the completely martensitic state, i.e., heating begins with
the single-phase state. Nevertheless, in the case of relatively small stresses σ = 100 MPa < σ6 (loop 1) the reverse
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Fig. 5 Fig. 6

transformation is a two-step process, and the steps separated by an anhysteretic segment, and the large-strain
segment precedes the small-strain segment. At σ = 200 MPa (loop 2), the anhysteretic segments of the direct and
reverse transitions decrease. Finally, at σ = σ6 = 350 MPa (loop 3) the steps of the reverse transition do not differ.

Figure 5 shows a curve of the phase strain ε accumulated in the direct rhombohedral transformation under
constant stress versus this stress at the transition temperatures (2.2). At σ < σ1 ≈ 173 MPa, the direct rhombo-
hedral transformation occurs until complete transition from the austenitic phase to the rhombohedral phase, and ε
increases linearly with increase in applied stress (dashed straight line in Fig. 5). With increase in stress in the
region σ1 < σ < σ2, the temperature interval of the rhombohedral transformation and the degree of completeness
of the R-transformation at the end of this region decrease (see Fig. 1) because this phase transition stops, without
having completed, and the martensitic transformation begins. At the same time, because of increase in stress, the
growth rate of ε increases. As a result, ε first increases with increase in stress and then drops rapidly to zero at
σ = σ2 ≈ 215 MPa, because beginning with this value of stress, the rhombohedral transformation does not occur.
Thus, the proposed model describes qualitatively the nonmonotonic change in the phase strain of the rhombohedral
transformation under increase in stress [7].

The proposed model describes not only the direct and reverse transformations under the action of constant
stress but also the phenomena of the martensitic and rhombohedral inelasticity and pseudoelasticity under isother-
mal active loading from the austenitic state. The corresponding hysteresis curves calculated from the formulas given
above are shown in Fig. 6 for the characteristics of the material (2.2) and T = 130◦C. The high hardening and the
narrow loop correspond to the rhombohedral transformation caused by stresses, (the dashed curve corresponds to
unloading), and the small hardening and the wide loop correspond to the transition martensitic, which agrees with
experimental data of [2, 3].
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